
where       is a contrived vector whose direction is perpendicular 
to and away from the surface (that is, it’s at right angles to the 
face of the surface) and whose magnitude it equal to the 
differential surface area of the surface.     

Hopefully Helpful Hints for Gauss’s Law 

1.) 

As before, there are things you need to know about Gauss’s Law.  In no 
particular order, they are:   

 d
!
A

 d!e =
!
E • d

!
A,

a.) In the context of Gauss’s Law, at a differential level, the electric 
flux is related to the amount of electric field E that passes through a 
differential surface dA.  It is defined as: 

b.) What Gauss observed was that if there is a closed surface, the 
amount of electric flux through the surface will be proportional to the 
amount of charge inside the surface. 

In expanded form, this comes out as: 

2.) 

In other words, if you sum up all the differential fluxes through all of the 
differential surfaces over the entire closed structure, you will find that that 
number you end up with will be proportional to the amount of charge 
inside the structure.  Mathematically, this is stated as: 

!e  " qenclosed

To make this into an equality, you have to multiply by a proportionality 
constant.  In this case, it is the permittivity of free space, or    .  With 
that, Gauss’s Law is written as: 
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3.) 

b.) Gauss’s Law is ALWAYS TRUE, whether the 
integral is easy to do or not (a charge sitting next 
to the edge of a sphere will satisfy the law, but 
with the electric field due to the charge varying 
from point to point on the surface, and with the 
angle between the electric field vector and the 
area vector varying, God help the poor soul who 
tries to evaluate the integral). 

The trick to using Gauss’s Law is to find a 
geometry that is symmetric with the charge.  
That is, you want a geometry that either has the 
electric field vectors parallel to the area vectors, 
or one in which the dot product between the two 
parameters is zero (that is, the two are at right 
angles with one another—this will be important 
when we get to cylindrical symmetry). 

Q
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 d
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Gaussian 
surface  

4.) 

c.) As an interesting side note: Although the integral on the left side of 
Gauss’s Law looks like the nasty part of a problem (note the nastiness),  

for spherical symmetry that integral will ALWAYS be of the same form (and 
the same is true of cylindrical symmetry).  In other words, when you start 
doing more complicated problems, the hard part is determine how much 
charge is inside the imaginary Gaussian surface.  

 

!
E • d

!
A

S"! =
qenclosed
"o

E 2!rL( )  for cylindrical symmetry, where "r" is the Gaussian cylinder's radius

d.) Just to be complete, the left side will always look like:   

E 4!r2( )  for spherical symmetry, where "r" is the Gaussian sphere's radius

NOTE:  For both the AP test and the Gauss’s Law test, you should be able to derive both of 
these relationships from scratch! 



5.) 

2.) As was said above, the difficulty of most Gauss’s Law problems is 
determining the “charge enclosed” part of the relationship.  You have to 
include ALL the charge involved, and in some cases you have to do 
some pretty fancy dancing to execute that feat.  The following are 
examples of problems with spherical symmetry and cylindrical symmetry. 

3.) Problem with SPHERICAL SYMMETRY:  Assume your have a thick 
skinned, insulating (non-conducting), hollow sphere of inside radius a 
and outside radius b (a cross-section is shown on the next page).  
Assume also that the insulator has a volume-charge-density in it that is 
non-linear and is defined as: 

! = k1r, where "k1" is a constant (not 1
4"#o

).

If we place an imaginary, spherical, 
Gaussian surface of radius less than “a” 
centered at the configuration’s center, 
the charge enclosed within the Gaussian 
surface will be zero.  That mean the 
electric field in that region will be zero 
inside that region. 

6.) 

Determine: 

a.) E r( )  for r < a;

b.) E r( )  for a < r < b;

c.) E r( )  for r > b;

(Note that this is, quite literally, how 
most Gauss’s Law problems are stated 
on AP tests.) 

a b

air
! = kr

a.) E r( )  for r < a;

Gaussian sphere with
    no charge enclosed



7.) 

a b

air

! = kr

 Being a sphere, the shell’s 
surface area will be         

8.) 

Define a Gaussian surface 
between a and b.  Call it’s 
radius c and its differential 
thickness “dc.” 

4!c2.
dc

Gaussian surface

differentially thin spherical shell

dV = surface area( ) differential thickness( )
    =     4!c2( )                    dc( )

b.) E r( )  for a < r < b;

 Again, being a sphere, the 
shell’s differential volume will 
equal the product of the shell’s 
surface area and thickness (dc).  
That is: 

a
b
r

c



9.) 

differential charge dq uniformly 
   distributed throughout shell

The differential charge dq inside will be: 

dq = volume charge density evaluated at "c"( ) differential volume( )
    =                        !( )                                            4"c2  dc( )
    =                       kc( )                                           4"c2  dc( )
    = 4"k( ) c3  dc( )                                                           

a
b
r

c dc

10.) 

Knowing the differential charge 

we can sum up all the differential 
charge amounts inside all the 
differential volumes between a and r 
(that is, everywhere there is charge 
inside the Gaussian surface) and 
write Gauss’s Law for E between a 
and r as: 

This is evaluated fully on the next page. 

dq = k1c( ) 4!c2  dc( )
    = 4!k1c

3  dc,

E • dA
c=a

r

! =
qencl
"o

a
b
r

c dc



11.) 
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c = a

c = r

a
b
r

c dc

12.) 

Gaussian surface

Now the Gaussian radius r is 
greater than b.  The ONLY 
difference between this and 
the previous section is that 
the charge integral will go 
from c=a to c=b instead of 
from c=a to c=r (this is 
because r is now outside the 
sphere, so the charge 
enclosed is ALL of the 
charge inside the sphere).  
By simply putting a 

c.) E r( )  for r > b;

b wherever we see an r in the charge part of the 
equation, we get: 

 

!
E =

k1
4!or

2 b4 " a4#$ %&

Note:  The r in the denominator is from the flux part (it’s the Gaussian 
radius), not the “charge enclosed” part, so it doesn’t change!  

a
b
r

c

dq

dc



ADDED TWIST: Let’s assume 
we still wanted the field 
outside of b, but in addition to 
the volume charge density in 
the insulator section there is a 
negative charge -Q at the 
center?  How would things 
have changed?   

The only difference would 
have been on the right side of 
Gauss’s Law in the “charged 
enclosed” term.  That would 
have been:  

13.) 

=
!Q + dq"

#o
The math for this situation is shown on the next page.  What important 
thing to observe here is that ALL the charge inside the Gaussian surface 
that has be accounted for!!! 

Gaussian surface

a
b
r

c

dq

-Q
dc
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So why do I always assume the electric 
field to be in the direction of dA? 

In the solution, notice that there is a 
positive and negative part (look at it!).  
When you start the problem, YOU DON’T 
KNOW which one will be larger.  As a 
consequence, you won’t know whether the 
electric field through the Gaussian surface 
will be inward or outward. 

In cases like this, you have to chose one or 
the other.  For simplicity, I ALWAYS choose 
outward along the line of dA.  IF I’M 
WRONG, all that happens is that when I put 
numbers in, I get a negative sign in front of 
the electric field magnitude.  Because 
magnitudes shouldn’t be negative, that sign 
lets me know I’ve assumed the wrong 
direction for E.  

c = a

c = b



15.) 

4.) CYLINDRICAL SYMMETRY:  Consider now a thick-skinned insulating 
cylinder with inside radius a and outside radius b.  Assume there is          
worth of charge on a very thin wire down its axis, and in the insulating 
material a volume charge density of                                                           
Three different views of our system are shown below. 

! = k1r, where "k1" is a positive constant.

!" 's

! = kr

!"

a

b
a

b! = kr

!"

! = kr

!"
a

b•

3-d view 

side view 

end view 

wire 

wire wire 

16.) 

! = kr

!"

a

b
a

b! = kr

!"

! = kr

!"
a

b•

3-d view 

side view 

end view 

wire 

wire wire 

Our problem is to derive an expression for: 

a.) E r( )  for r < a;

b.) E r( )  for a < r < b;

c.) E r( )  for r > b;



a.) the magnitude of the electric field is the same at every point on the 
surface with a directional vector relationship with dA that doesn’t vary, 
or; 

17.) 

a.) E r( )  for r < a :

For cylindrical symmetry, the surface that does the trick is . . . wait for 
it . . . a cylinder!  That Gaussian surface shown on the next three pages 
from all three views.   

                              As always, we begin by generating an imaginary 
Gaussian surface that has one of two properties.  Either: 

b.) the dot product of E and dA evaluated on the surface is zero (that 
is, E runs along the face, not perpendicular to the face).   

(On the next several pages, that Gaussian surface will be shown from all 
three perspectives.)   

For the 3-d view: 

18.) 

h

3-d view 

wire 
red section is the 
part of the charged 
wire that is INSIDE 
Gaussian surface 

Gaussian cylinder of 
arbitrary length h 

CROSS-SECTION 

a

b

! = kr

r

!"



19.) 

side view 

•

end view 

Gaussian cylinder of 
arbitrary length h 

Gaussian cylinder of 
arbitrary length h 
and radius r 

CROSS-SECTIONS 

h

a
b

! = kr

r

!"

! = kr
a
r!"

20.) 

The amount of charge found inside the Gaussian 
surface is equal to the charge-per-unit-length        
times the length h of the Gaussian surface (that 
is,                       ).  Noting that the cylindrical part 
of the cylinder has flux through it but the end-
caps don’t (the angle between E and dA at the 
end-caps is ninety degrees), the sum of all the 
differential dA’s over the cylindrical part of the 
Gaussian surface will be equal to the 
circumference of that Gaussian cylinder (      ) 
times its length h, or            .  Assuming (as 
always) that dA and E are in the same direction 
(even though we know they aren’t in this case as 
the field-producing charge is negative—
remember, we are going for consistency here 
with our direction assumptions), we can write 
Gauss’s Law as shown to the right:  
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qenclosed = !"h

2!r
2!r( )h

Remember, a calculated –E means only that the assumed direction for E was wrong
—no big deal!  In fact, we expected that for this relatively simple configuration.) 



The imaginary, cylindrical, Gaussian surface now must extend into the 
insulating material.  That means we are going to have two charge sources 
within the Gaussian surface.  Getting the insulator’s charge (inside the 
Gaussian surface) is a little tricky.  Follow along: 

21.) 

b.) determine E r( )  for a < r < b :

We begin by defining a differentially thin cylindrical shell of radius c and 
thickness dc located inside both the insulator and inside the Gaussian 
radius r. 

If we can determine how much differential charge dq is in that 
differentially thin shell, we can integrate over all the shells from c=a 
(where the insulating material starts) to c=r (where the Gaussian 
surface is) to get the insulator part of the charge inside the Gaussian 
surface. 

The end-view sketch on the next page highlights all of this. 

The differential volume dV of 
a cylindrical shell of length h, 
radius c and thickness dc is 
equal to the circumference 
times the thickness times the 
length, or: 

22.) 

•

dq = charge per unit volume( ) volume of shell( )
    =                  !                               dV
    =              k1c( )                      2"h( ) c dc( )
    = 2"k1h( ) c2dc( )        

The differential charge dq in 
that differentially thin cylindrical 
shell (again, thickness dc) is 
equal to: 

dV = circ.( ) length( ) thickness( )
     = 2!c( )     h( )         dc( )
    = 2!h( ) c dc( )

end view 

dc
a

c

! = kr
r

!"

pink is charge inside 
Gaussian surface 

red is charge outside 
Gaussian surface 

Gaussian  
  surface 



23.) 

The total charge inside the 
Gaussian surface will be the 
charge on the wire    
(i.e.,        ) added to the net 
charge inside the insulating, 
differential, cylindrical shells 
between a and r. In other 
words, it will be the 
evaluation of the 
integral         .  With all this, 
we can write Gauss’s Law 
as:  
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24.) 

                              Just as was the case with the spherical symmetry 
problem, the only difference between the magnitude of E in the outside 
region and in the insulating region is the limits used when doing the 
integral that determines the “charge enclose.”  As before, those limits 
should be c=a to c=b instead of c=a to c=r.  Making that alteration, you 
can make the appropriate adjustments to the solution from the previous 
section and end up with the solution given below. 
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E =

!"( ) + 2
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#k1 b

3 ! a3$% &'
2#(or

c.) E r( )  for r > b :

Note that the only time you really can’t make simple adjustments like this is when 
you’ve done some canceling that is no longer applicable.  For that you have to 
be careful. 



25.) 

5.) There is one more thing we need to say something about when it comes 
to both spherical and cylindrical symmetry.  That has to do with conductors. 

So consider the following problem: 
You have a positive point charge Q 
suspended from an ignorable string 
and located at the center of a 
hollow conducting sphere of inside 
radius a and outside radius b.  Use 
Gauss’s Law on the region inside 
the conductor and see what you 
get.   

If you will remember, conductors in electrostatic situations cannot have 
electric fields within them.  Otherwise, free charge will respond to those 
electric fields and move around until the motion-producing fields are 
neutralized.  

Q
a b

air

conductor

26.) 

Dutifully, we begin the Gauss’s Law process by generating an imaginary 
Gaussian surface or radius r between a and b (see sketch). 

With the sketch, we execute Gauss’s Law: 

Q
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E d
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         #    
!
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Oopsie!  This suggests there’s a non-
zero electric field inside the conductor, 
but we know that can’t happen.  So what 
gives? 

a
b

r



27.) 

The key is in the fact that electrons can move around freely inside the 
conductor.  In this case, -Q’s worth of charge will migrate to the inside 
surface of the hollow sphere leaving +Q’s worth of charge on the outside 
surface.  Then, when the “charge enclosed” is determine for the situation 
between a and b, the net charge inside the Gaussian surface is zero and 
we deduce there is no electric field in 

Q
 

!
E! • d

!
A =

qenclosed

"o

   #    
!
E! d
!
A cos$ =

Q + %Q( )
"o

= 0

             #    
!
E = 0

When you deal with the region outside b, the 
total “charge enclose” becomes +Q at the 
center, -Q on the inside of the hollow, +Q on the 
outside of the sphere for a net charge of +Q.  In 
other words, from a distance the configuration 
will look like a point charge. 

!!Q's charge on
 inside surface

+Q's charge on
outside surface

the region.  That is:    

28.) 

As an interesting side-note, the electric field lines for this problem would 
look like: 

Q

!



29.) 

Relationships you should remember! 

S = 4!r2
Surface area for a sphere: 

S = 2!r( )h

Surface area for barrel of a cylinder: 
    (the circumference times the length) 

r 

h Circ = 2!r( )

r 

30.) 

dV = 4!r2( )dr 

Differential volume dV for a spherical shell: 
   (this is the sphere’s surface area S times its  
       thickness dr) 

dV =       S        dr
     = 2!r( )h"# $%  dr

Differential volume dV of a differentially thin  
   cylindrical shell: (this is the cylinder’s surface  
      area S times its thickness dr) r 

h 

S = 2!r( )h
dr 

r
•

dr
S = 4!r2( )

cross-section of spherical shell 



31.) 

dq = !dV

    = ! 4"r2( )dr#$ %&    

Differential charge dq inside differentially thin spherical shell of volume dV: 
    (this is the differential volume of the shell times its charge density) 

dq = !dV
    = ! 2"rh( )dr#$ %&    

Differential charge dq inside differentially thin cylindrical shell of volume dV: 
    (this is the differential volume of the shell times its charge density) 

32.) 

Lastly, what about a thin sheet of a conductor material with a charge-
per-unit-area      on it? !

2.) The dot product of E and dA be zero (that is, the two 
are perpendicular to one another). 

To begin with, when talking about a conductor,   
denotes the amount of charge per unit area on 
ONE SURFACE of the structure.  That means 
there is        worth of charge-per-unit-area on one 
side of the sheet, and        worth of charge-per-
unit-area on the other side of the sheet. 

! 's
! 's

!

Remember, Gaussian surfaces are chosen so as to 
have one of two general characteristics.  Either: 

1.) The magnitude of E is the same everywhere on the 
surface, and E and the differential area vector dA have 
the same angle between them everywhere on the 
surface (preferably zero degrees), OR 

For our situation, a plain cylindrical plug will do the job. 



33.) 

a.) If the sheet extends to 
infinite, or if it is finite and the 
end-cap of the Gaussian 
surface lies very near both the 
sheet and the sheet’s center, 
then the electric field through 
the end-cap will be directed 
outward.  This is the same 
direction as the end-cap’s area 
vector A.  As such, all the flux 
will be through the right end-
cap (the left end-cap is in an 
area where there is NO 
electric field) and the total 
electric flux through the 
Gaussian surface will equal 
EA. 

E 

A 

What is shown here is a side-view and a 3-d view of the 
conductor, complete with Gaussian plug. Note: 

E=0 

E=0 

E 

34.) 

E! • dS =
qenclosee

"o

   #    EA =
$A
"o

  

   #    Einfinite, charged, conducting sheet =
$
"o

 

The total amount of charge inside the Gaussian surface is the amount of 
charge on the section of conductor that is inside the Gaussian surface.  
That charge will equal the charge per unit area      times the area, or A (it 
is the same area as that of the end-cap).  With that, and noting that the 
flux only passing through the right-hand end-cap, Gauss’s Law yields: 

Note that this field is not a function of distance from the sheet.  This was 
explained in class. If you don’t understand it, come talk to me.  (Clearly, if 
the sheet is not infinite, the expression will be a good approximation to 
some distance out, though that distance will depend upon how good an 
approximation you want.) 

!



35.) 

HAVING DONE THAT, now consider an infinite (or at least very large), 
charged, INSULATING sheet. 

At least part of the problem here is that the charge-per-unit-area 
function     now means something different than it did when used 
with a conductor.  For an insulator, it is assumed that charge is shot 
throughout the structure.  That means that the       function doesn’t’ 
tell you how much charge is on the surface, it tells you how much 
charge is below the surface (under a given area).  What this means 
is that we can not have our Gaussian surface terminate inside the 
slab!   

!  

!  

Both a side-view and a 3-d view of our slab and Gaussian plug are 
shown on the next page. 

36.) 

The electric field E is still directed away from the slab, but 
because it is not zero inside the slab we have to extend the 
Gaussian surface out in both directions.  That leaves Gauss’s 
law looking like: 

E 

A 

E 

A 

E! • dS =
qenclosee

"o

  #    2 EA( ) = $A
"o

  

  #    Einf, chrgd, insultng sht =
$

2"o

 

Notice that because it’s the flux 
through the Gaussian surface 
end-caps that matters, we really 
don’t care what’s happening 
inside the conductor.  This 
makes life a lot easier as what’s 
going on inside the conductor is 
not a trivial matter. 


